Universidade Federal do ABC

Lista 6 - Bases Matemáticas (Última versão: 8/7/2017 - 13:30)

Funções - Parte 1

Conceitos Básicos e Generalidades

 ${\bf 1}$ — Sejam dados Ae B conjuntos não vazios.

- a) Defina rigorosamente o conceito de função de A em B.
- b) Defina rigorosamente os conceitos de função injetora, sobrejetora e bijetora.

2 — Dados os conjuntos $A = \{a, e, i, o, u\}$ e $B = \{1, 2, 3, 4, 5\}$, diga quais das relações abaixo definem uma função $f : A \rightarrow B$. Para cada uma destas, diga se é injetora, sobrejetora ou bijetora.

- a) $R = \{(e, 1), (o, 2)\}$
- b) $R = \{(a, 1), (e, 1), (i, 1), (o, 2), (u, 2)\}$
- c) $R = \{(a, 1), (e, 2), (i, 3), (o, 4), (u, 5)\}$
- d) $R = \{(a, 1), (e, 1), (e, 2), (i, 1), (u, 2), (u, 5)\}$
- e) $R = \{(a,3), (e,3), (i,3), (o,3), (u,3)\}$
- f) $R = \{(a, 1), (e, 3), (i, 3), (o, 2), (u, 2)\}$
- g) $R = \{(a, 2), (e, 1), (i, 4), (o, 5), (u, 3)\}$

3 — Determine o domínio maximal D das seguintes funções $f:D\to\mathbb{R},$ em que $D\subset\mathbb{R}$

- a) $f(x) = \frac{1}{x(x+4)(3x+1)}$
- b) $f(x) = \frac{1}{\sqrt{x^2 1}}$
- c) $f(x) = \frac{1}{\sqrt{x(x^2-4)}}$
- d) $f(x) = \sqrt{\sqrt{1+x}-x}$
- e) $f(x) = \sqrt{|1 + x| |x^2|}$
- f) $f(x) = \sqrt[3]{1 + \sqrt{|x| 3}}$

4 — Determine o domínio maximal D das seguintes funções $f: D \to \mathbb{R}$, em que $D \subset \mathbb{N}$

- a) $f(n) = \frac{1}{n(n+4)(3n+1)}$
- b) $f(n) = \sqrt{|1 + n| |n^2|}$

5 — Para cada uma das seguintes funções, determine se são injetoras, sobrejetoras ou bijetoras, justificando (i.e. provando ou dando contra-exemplos)

a) Se $A = \{1, 2, 3, 4, 5, 6, 7\}$ e $f : A \to A$ dada por:

$$f(x) = \begin{cases} x, & \text{se } x \text{ \'e impar} \\ \frac{x}{2}, & \text{se } x \text{ \'e par} \end{cases}$$

b) Se $A = \{1, 2, 3, 4, 5, 6, 7\}$ e $g : A \to A$ dada por:

$$f(x) = \begin{cases} x+1, & \text{se } x \neq 7 \\ 1, & \text{se } x = 7 \end{cases}$$

- c) $f: \mathbb{N} \to \mathbb{N}, f(n) = 3n + 1.$
- d) $f: \mathbb{Z} \to \mathbb{Z}$, f(n) = n |n|.
- e) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = ax + b \text{ com } a \neq 0$.
- f) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 2x^2$.
- g) $f:(0,\infty)\to\mathbb{R}, f(x)=\frac{1}{x}$.
- h) $f: \mathbb{R}^* \to \mathbb{R}$, $f(x) = \frac{1}{x^2}$.
- i) $f:[0,\infty)\to\mathbb{R}, f(x)=\sqrt{x}.$
- j) $f: \mathbb{R} \to \mathbb{R} \times \mathbb{R}, f(x) = (x, x).$
- k) $f: \mathbb{R} \to \mathbb{R} \times \mathbb{R}, f(x) = (x, |x|).$
- 1) $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, f(x, y) = x |y|.$
- m) $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$, $f(x, y) = (x, y^3)$.

6 — Determine o conjunto imagem da função $f: \mathbb{N} \to \mathbb{Z}$ dada por $f(n) = (-1)^n n$.

7 — Considerando a função f do Exercício 6, determine o conjunto imagem da função $g: \mathbb{N} \to \mathbb{Z}$ dada por g(n) = f(n) + f(n+1).

8 — Sejam dadas as seguintes funções

- (a) $f: \mathbb{N} \to \mathbb{N}$, f(n) = 3n + 1
- (b) $g : \mathbb{R} \to \mathbb{R}, \ g(x) = x |(x+2)^2 1|$
- (c) $h:[0,\infty)\to \mathbb{R}, \ h(x)=\sqrt{x+1}-\sqrt{x}$

Determine as pré-imagens abaixo

- a) $f^{-1}(\{2\})$.
- b) $f^{-1}(\{2k \mid k \in \mathbb{N}\}).$
- c) $g^{-1}(\{-1\})$.
- d) $g^{-1}([-3,-1])$.
- e) $h^{-1}(\{1\})$.
- f) $h^{-1}([\frac{1}{3}, \frac{1}{2}])$

Exercícios Complementares

9 — Seja dada uma função $f:A\to B$. Se X e Y são subconjuntos do domínio A e se V e W são subconjuntos do contradomínio B, mostre que

- a) Se $X \subset Y$ então $f(X) \subset f(Y)$.
- b) Se $V \subset W$ então $f^{-1}(V) \subset f^{-1}(W)$.
- c) $X \subset f^{-1}(f(X))$.
- d) Se f é injetora então $X = f^{-1}(f(X))$.

10 — Com os mesmos dados do Exercício 9, mostre que

- a) $f(X \cup Y) = f(X) \cup f(Y)$.
- b) $f(X \cap Y) \subset f(X) \cap f(Y)$.
- c) Se f é injetora então $f(X \cap Y) = f(X) \cap f(Y)$.
- d) $f^{-1}(V \cup W) = f^{-1}(V) \cup f^{-1}(W)$.
- e) $f^{-1}(V \cap W) = f^{-1}(V) \cap f^{-1}(W)$.

11 — Considere a função $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, dada por f(x, y) = y - |x|.

- a) Calcule $f^{-1}(\{0\})$
- b) Calcule $f^{-1}((0,\infty))$

* 12 — Seja A um conjunto (não vazio) com n elementos e seja B um conjunto qualquer. Mostre cada uma das seguintes afirmações:

- a) Se existe uma função injetora $f:A\to B$, então B possui pelo menos n elementos.
- b) Se existe uma função sobrejetora $f:A\to B$, então B possui no máximo n elementos.
- c) Conclua, das afirmações acima, a seguinte propriedade: dois conjuntos finitos possuem o mesmo número de elementos se, e somente se, existe uma função bijetora entre tais conjuntos.

Respostas dos Exercícios

2 c.) É função, bijetora;

d.) Não é função:

f.) E função, nem injetora, nem sobrejetora;

3 c.) $D = (-2,0) \cup (2,+\infty);$

d.)
$$D = \left[-1, \frac{1+\sqrt{5}}{2}\right];$$

f.) $D = (-\infty, -3] \cup [3, +\infty)$

f.)
$$D = (-\infty, -3] \cup [3, +\infty)$$

4 a.) $D = \mathbb{N}^*$;

b.)
$$D = \{0, 1\}$$

5 a.) Nada;

b.) Bijetora;

c.) A função é injetora pois

$$f(n') = f(n) \Rightarrow 3n' + 1 = 3n + 1 \Rightarrow n = n'$$

Entretanto não é sobrejetora pois 5 pertence ao contradomínio, mas não existe $n \in \mathbb{N}$ tal que f(n) = 5, pois $3n + 1 = 5 \Rightarrow 3n = 4$ e claramente não existe nenhum natural com essa propriedade.

d.) Nada;

e.) A função é injetora pois

$$f(x') = f(x) \Rightarrow ax + b = ax' + b \Rightarrow ax' = ax$$

e como $a \neq 0$, temos que x = x'. A função é sobrejetora pois dado $y \in \mathbb{R}$

$$f(x) = y \Leftrightarrow ax + b = y \Leftrightarrow x = \frac{y - b}{a}$$

ou seja, $f(\frac{y-b}{a}) = y$.

f.) Nada;

g.) Injetora;

h.) Nada;

i.) Injetora;

j.) A função não é sobrejetora, pois (1,0) pertence ao contradomínio mas não existe $x \in \mathbb{R}$ tal que f(x) = (1,0). A função é injetora, pois $f(x) = f(x') \Rightarrow (x, x) = (x', x') \Rightarrow x = x'$

k.) Injetora:

A função não é injetora pois 1.) Sobrejetora. f((0,1)) = 1 = f((0,-1)).

m.) Bijetora

6 Im $f = \{2n \mid n \in \mathbb{N}\} \cup \{-(2n+1) \mid n \in \mathbb{N}\}\$

7 Im $f = \{-1, 1\}$

b.) $\{n \in \mathbb{N} \mid n \text{ \'e impar e m\'ultiplo de 3}\}$

 $(c.) \{-1\}$

 $\mathbf{d.}$) [-3, 0]

e.) {0}

 $f.) \left[\frac{9}{16}, \frac{16}{9} \right]$

10 a.) Se $X \cup Y = \emptyset$, a afirmação é trivial. Caso contrário, seja $a \in f(X \cup Y)$. Então existe $b \in X \cup Y$ tal que f(b) = a. Como $b \in X$ ou $b \in Y$, então $a \in f(X)$ ou $a \in f(Y)$. Assim $f(X \cup Y) \subset f(X) \cup f(Y)$. Por outro lado, se $a \in f(X) \cup f(Y)$, então existe $b \in X$ ou $b \in Y$ tal que f(b) = a. Em qualquer um dos casos, existe $b \in X \cup Y$ tal que f(b) = a. Logo, $f(X \cup Y) = f(X) \cup f(Y)$.

c.) A inclusão $f(X \cap Y) \subset f(X) \cap f(Y)$ é objeto do item (b). Mostremos somente a inclusão $f(X) \cap f(Y) \subset f(X \cap Y)$. Se $f(X) \cap f(Y) = \emptyset$, a inclusão é trivial. Senão, seja dado $a \in f(X) \cap f(Y)$. Então existem $b \in X$ e $c \in Y$ tais que f(b) = a e f(c) = a. Como a função f é injetora (hipótese do exercício), deve resultar b = c. Assim, $b \in X \cap Y$ e portanto $a \in f(X \cap Y)$.

e.) Se $V \cap W = \emptyset$, então a inclusão $f^{-1}(V \cap W) \subset$ $f^{-1}(V) \cap f^{-1}(W)$ é trivial. Senão, seja $x \in$ $f^{-1}(V \cap W)$. Como $f(x) \in V \cap W$, então $f(x) \in V$ e $f(x) \in W$, e assim resulta $x \in f^{-1}(V) \cap f^{-1}(W)$. Logo, vale $f^{-1}(V \cap W) \subset f^{-1}(V) \cap f^{-1}(W)$. Vice-versa, se $f^{-1}(V) \cap f^{-1}(W) = \emptyset$, a inclusão $f^{-1}(V) \cap f^{-1}(W) \subset f^{-1}(V \cap W)$ é trivial. Senão, seja $x \in f^{-1}(V) \cap f^{-1}(W)$. Então $f(x) \in V \in f(x) \in W$, ou seja, $f(x) \in V \cap W$. Logo, $x \in f^{-1}(V \cap W)$, o que prova a inclusão $f^{-1}(V) \cap f^{-1}(W) \subset f^{-1}(V \cap W).$

11 a.)
$$\{(x, |x|) | x \in \mathbb{R} \}$$

b.) $\{(x, y) \in \mathbb{R}^2 | y > |x| \}$

12 Vamos provar as afirmações por indução sobre o número n de elementos do conjunto A. No que se segue, denotaremos o número de elementos de um conjunto X por |X|.

 $\mathbf{a.})P(n)$: se um conjunto A tem n elementos e se existe uma função injetora $f:A\to B$, então o conjunto B possui ao menos n elementos. Usaremos a $primeira\ versão$ do PIF.

Se n = 1, então o conjunto B deve possuir ao menos a imagem de tal elemento. Logo $|B| \ge 1$ e P(1) é verdadeira. Agora, assumamos que, para um certo natural $k \geq 1$, vale a propriedade P(k), isto é: se |A| = k e se existe uma função injetora $f:A\to B$, então $|B|\geq k$. Provemos que vale P(k + 1). Para isso, seja dado um conjunto de k + 1 elementos $A = \{a_1, a_2, \dots, a_{k+1}\}$ e seja $f: A \to B$ uma função injetora. Considere os conjuntos $A' = A \setminus \{a_{k+1}\}\$ e $B' = B \setminus \{f(a_{k+1})\}\$ e tome a função $g: A' \to B'$ dada por g(x) = f(x). Note que a função g está bem definida e ainda é injetora, pois f é injetora, e note que o conjunto A' tem k elementos. Pela hipótese indutiva, B'possui ao menos k elementos. Por como foi construído B', concluímos que B possui ao menos k+1elementos, provando P(k+1). Pelo PIF, P(n) vale para todo $n \ge 1$.

 $\mathbf{b.})P(n)$: se um conjunto A tem n elementos e se

existe uma função sobrejetora $f: A \to B$, então o conjunto B possui no máximo n elementos. Usaremos a $sequnda\ versão$ do PIF.

Se n = 1, então Im f só pode conter um elemento. Como Im f = B, resulta |B| = 1, logo P(1) é verdadeira. Agora, assumamos que, fixado $n \in \mathbb{N}$, vale a propriedade P(k) para todo $1 \le k < n$, isto é: se |A| = k < n (note que $|A| \ge 1$ pois $A \ne \emptyset$) e se existe uma função sobrejetora $f: A \to B$, então $|B| \le k$. Provemos que vale P(n). Para isso, seja A um conjunto de n elementos e seja $f: A \to B$ uma função sobrejetora. Escolha $b \in \text{Im } f$ e considere os conjuntos $A' = A \setminus f^{-1}(\{b\})$ e $B' = B \setminus \{b\}$. Tome a função $g: A' \to B'$ dada por g(x) = f(x). Note que a função g está bem definida e ainda é sobrejetora. Note, por fim, que o conjunto A' tem um número k < n de elementos. Pela hipótese indutiva, $|B'| \le k$. Como |B| = |B'| + 1 e k < n, então $|B| \leq n$, o que prova P(n). Pelo PIF (segunda versão), a propriedade P(n) vale para todo $n \ge 1$.