Bases Matemáticas - Lista 8

Funções - Parte 5

Funções Trigonométricas

 ${f 1}$ — Determine o domínio das seguintes funções:

- a) f(x) = tg(1-x)
- b) $f(x) = \frac{1}{\cos(x)}$
- c) $f(x) = \arccos \frac{2x}{1+x}$
- d) $f(x) = 3 |\cos |x| 1|$

2 — Para cada uma das funções reais f abaixo, determine seu domínio, sua imagem, seu período, os intervalos nos quais a função é positiva, negativa, crescente e decrescente. Além disso, analise sua paridade (par ou ímpar) e esboce o seu gráfico.

- a) $f(x) = 4\operatorname{sen}(2x)$
- b) $f(x) = 3\cos\left(x \frac{\pi}{4}\right) + 7$
- c) $f(x) = \tan\left(2x \frac{\pi}{2}\right)$
- $d) \quad f(x) = \sin x \cos x$
- e) $f(x) = -3\csc(x \pi)$
- $f) \quad f(x) = \tan(|x|)$

3 — Esboce os gráficos das seguintes funções:

- a) $f(x) = \cos 3x$
- b) $f(x) = 2\sin(3x + \pi)$
- c) $f(x) = \operatorname{sen}(x) + x$
- $d) \quad f(x) = \operatorname{tg}(|x|)$
- e) $f(x) = x \operatorname{sen}(x)$
- $f) \quad f(x) = \tan(-x) + 2$
- $g) \quad f(x) = |\tan(x)|$

h) $f(x) = \tan(2x - |x - 1|)$

i) $f(x) = \begin{cases} \cos(2x), \text{ se } x < 1\\ 2\cos(x-1), \text{ se } x \ge 1 \end{cases}$

4 — Calcule

- a) $\operatorname{sen}(a)$ sabendo que $\cos(a) = b$ e $0 \le a \le \pi/2$
- b) sen(a) sabendo que tg(a) = b/c e $0 \le a \le \pi/2$
- c) sen(a) sabendo que tg(a) = b/c e $\pi/2 \le a \le \pi$
- d) $\operatorname{arcsen}(a)$ sabendo que $\operatorname{tg}(a) = b/c$ e $0 \le a \le \pi/2$
- e) $\cot g(a)$ sabendo que $\sin(a) = b/c$ e $0 \le a \le \pi/2$

5 — Calcule

- a) $\arcsin(-\frac{\sqrt{3}}{2})$
- b) $\arctan(1) \arctan(-1)$
- c) $\operatorname{arcsen}(\cos(2x)) \ 0 \le x \le \pi/2$
- d) $\arcsin(\cos(2x)) \pi/2 \le x \le \pi$

6 — Sendo x um número real tal que sen $x = \sqrt{a - \frac{1}{2}}$ e cos x = a - 1, determine a.

7 — Resolva, em \mathbb{R} , as seguintes equações:

- a) $\cos^2 x = 1 \sin x$
- b) $\sin x = \cos \left(\frac{9\pi}{2} 2x \right)$

- c) $\operatorname{sen}\left(x \frac{\pi}{2}\right) = \cos(2x)$
- d) $\sec 2x = 2$
- e) $\arctan(x^2 + x 1) = \frac{\pi}{4}$
- f) $\operatorname{arcsec}(2x \pi) = \frac{2\pi}{3}$

8 — Considere a equação trigonométrica $\tan x + \cot x = a$, onde $a \in \mathbb{R}$. Para quais valores de a a equação admite solução? Resolva a equação para a=4.

- ${f 9}$ Para cada uma das funções f abaixo, determine seu domínio, sua imagem e esboce o seu gráfico.
 - a) $f(x) = 3 \arcsin(x-1) + 2$, sendo arcsen a função inversa de sen : $[-\pi/2, \pi/2] \rightarrow [-1, 1]$.
 - b) $f(x) = \arccos\left(2x + \frac{1}{2}\right)$, sendo arccos a função inversa de $\cos:[0,\pi] \to [-1,1]$.
 - c) $f(x) = |\arctan(|x-1|) 1|$, sendo arctan a função inversa de tan : $]-\pi/2, \pi/2[\to \mathbb{R}.$

Respostas dos Exercícios

1 a.) $\mathbb{R}\setminus\{1-\pi/2+k\pi\}$ com $k\in\mathbb{N}$

3 c.) f(x) = sen(x) + x é uma função ímpar, logo tem gráfico simétrico com relação a origem. Também tem único zero em x=0. Seu gráfico, para $x\in[-3\pi,3\pi]$ é dado por

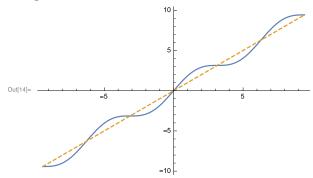


Figura 1: Gráfico de f(x) = x + sen(x). A linha tracejada corresponde ao gráfico de g(x) = x.

e.)f(x) = xsen(x) é uma função par. Os zeros de f(x) coincidem com os zeros da função sen(x). Seu gráfico para $x \in [-10\pi, 10\pi]$ é dado por:

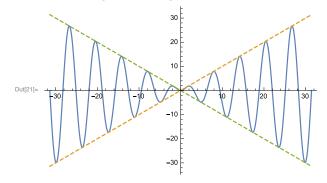
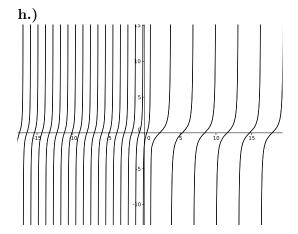


Figura 2: Gráfico de f(x) = xsen(x). As linhas tracejadas correspondem aos gráficos de h(x) = -x e q(x) = x.



5 a.)
$$-\frac{\pi}{3}$$
 b.) $\frac{\pi}{2}$

b.)
$$\frac{\pi}{2}$$

b.)
$$\frac{\pi}{2}$$
 c.) $\frac{\pi}{2} - 2x$

d.)
$$2x - \frac{3\pi}{2}$$

7 a.)
$$S = \left\{ x \in \mathbb{R}; \ x = k\pi \ ou \ x = \frac{\pi}{2} + 2k\pi, \ k \in \mathbb{Z} \right\}.$$

b.) $S = \left\{ x \in \mathbb{R}; \ x = k\pi, \ x = \frac{\pi}{3} + 2k\pi \ ou \right.$
 $x = -\frac{\pi}{3} + 2k\pi, \ k \in \mathbb{Z} \right\}.$

b.)
$$S = \left\{ x \in \mathbb{R}; \ x = k\pi, \ x = \frac{\pi}{3} + 2k\pi \ ou \right\}$$

c.)
$$S = \{-2, 1\}.$$

8 A equação admite solução para $a \in (-\infty, -2] \cup$ $[2,\infty)$. Sua solução quando a=4 é dada por $S=\{x\in\mathbb{R}; x=\frac{\pi}{12}+k\pi \ ou \ x=\frac{5\pi}{12}+k\pi, \ k\in\mathbb{Z}\}$