Universidade Federal do ABC

Lista 2 - Cálculo Vetorial e Tensorial - 2019.1 (atualizado 22/02/2019)

- 1. Um campo de forças \vec{F} é dado por $\vec{F}(x,y) = cxy\hat{\mathbf{i}} + x^6y^2\hat{\mathbf{j}}$, onde c é uma constante positiva. Essa força age em uma partícula que se move do ponto (0,0) à reta x=1, ao longo de uma curva $y(x)=ax^b$, onde a>0 e b>0. Encontre o valor de a como função de c, para que o trabalho realizado pela força \vec{F} seja independente de b.
- 2. Integre a função $\frac{x+y+z}{x^2+y^2+z^2}$ sobre o caminho dado por $\mathbf{r}(t)=(t,t,t),$ onde 0< a< t< b.
- 3. Calcule $\int_C (x^3 y^3) dx + (x^3 + y^3) dy$, onde C é a fronteira da região contida entre os círculos com centro na origem e raios 1 e 3, respectivamente.
- 4. Calcule as seguintes integrais de linha ao longo dos respectivos caminhos indicados:
 - (a) $f(x,y) = (x^2 2xy)\hat{\mathbf{i}} + (y^2 2xy)\hat{\mathbf{j}}$, entre os pontos (-1,1) e (1,1) ao longo da parábola $y=x^2$. (Resp.: -14/15).
 - (b) $f(x,y) = (y^2 z^2)\hat{\mathbf{i}} + 2yz\hat{\mathbf{j}} x^2\hat{\mathbf{k}}$, ao longo da trajetória $\alpha(t) = t\hat{\mathbf{i}} + t^2\hat{\mathbf{j}} + t^3\hat{\mathbf{k}}$, $t \in [0,1]$.
 - (c) $f(x, y, z) = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + (xz y)\hat{\mathbf{k}}$, ao longo do segmento de reta que liga (0,0,0) e (1,2,4).
 - (d) $f(x, y, z) = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + (xz y)\hat{\mathbf{k}}$, ao longo da trajetória $\alpha(t) = t^2\hat{\mathbf{i}} + 2t\hat{\mathbf{j}} + 4t^2\hat{\mathbf{k}}$, $t \in [0, 1]$.
- 5. Calcule $\int_C \frac{dx+dy}{|x|+|y|}$ onde C é o quadrado de vértices $(1,0),\,(0,1),\,(-1,0)$ e (0,-1), no sentido anti-horário. (Resp.: 0).
- 6. Calcule $\int_C 2x\,ds$, onde C é formada pelo arco C_1 da parábola $y=x^2$ de (0,0) a (1,1), seguido de um segmento de reta vertical C_2 de (1,1) a (2,2). (Resp.: $\frac{5\sqrt{5}-1}{6}+2$).
- 7. Defina o conjunto $T = \mathbb{R}^2 \{(x,y) | y = 0, x \leq 0\}$. Se $(x,y) \in T$, considere $x = r \cos \theta$, $y = r \sin \theta$, r > 0 e $-\pi < \theta < \pi$.
 - (a) Prove que θ é dado por

$$\theta = \begin{cases} a \tan \frac{y}{x}, & \text{se } x > 0, \\ \frac{\pi}{2}, & \text{se } x = 0, \\ a \tan \frac{y}{x} + \pi, & \text{se } x < 0. \end{cases}$$

(b) Mostre que

$$\frac{\partial \theta}{\partial x} = -\frac{y}{x^2 + y^2}, \qquad \quad \frac{\partial \theta}{\partial y} = \frac{x}{x^2 + y^2}.$$

8. Calcule $\int_C x^3 ds$, onde C é formada:

- (a) pelo arco C_1 da parábola $y = x^2$ de (0,0) a (1,1), seguido de um segmento de reta vertical C_2 de (1,1) a (2,2).
- (b) pela elipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$.
- 9. Mostre que $\oint_C \mathbf{r} \cdot d\mathbf{r} = 0$, onde \mathbf{r} é o vetor posição e C é uma curva de Jordan.
- 10. Dados f e g dois campos escalares definidos em \mathbb{R}^3 , mostre que dada C uma curva de Jordan,

$$\oint_C f(\nabla g) \cdot d\mathbf{r} = -\oint_C g(\nabla f) \cdot d\mathbf{r}$$

e consequentemente mostre que

$$\oint_{\partial S} f(\nabla g) \cdot d\mathbf{r} = \iiint_{S} [(\nabla f) \times (\nabla g)] \cdot \hat{\mathbf{n}} \, dS$$

- 11. Seja Γ o quadrado de vértices em (0,0),(2,0),(2,2) e (0,2). Seja o campo vetorial $\vec{F}(x,y)=(y^2,x)$. Calcule $\oint_{\Gamma} \vec{F} \cdot d\vec{r}$.
- 12. Seja Γ a fronteira do quadrado $[0,1] \times [0,1]$, orientada no sentido positivo. Calcule:
 - (a) $\oint_{\Gamma} \frac{2y + \sin x}{1 + x^2} dx + \frac{x + e^y}{1 + y^2} dy;$
 - (b) $\oint_{\Gamma} (3x^4 + 5)dx + (y^2 + 3y^2 1)dy$.
- 13. Mostre que $\oint_C y dx + x dy = 0$ para qualquer curva fechada simples C.
- 14. Dado um campo vetorial $\vec{F} = P\hat{\mathbf{i}} + Q\hat{\mathbf{j}}$, onde $P(x,y) = xe^{-y^2}$ e $Q(x,y) = -x^2ye^{-y^2} + 1/(x^2 + y^2)$, calcule a integral $\oint_C \vec{F} \cdot d\vec{\mathbf{r}}$, onde C é a fronteira de um quadrado de lado 2a em torno da origem, percorrida em sentido anti-horário.
- 15. Calcule a área interna a um cardióide, cuja equação polar é dada por $r=a(1-\cos\theta),\,\theta\in[0,2\pi].$
- 16. Considere

$$\vec{F}(x,y) = \left(-\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right).$$

Mostre que:

- (a) $\oint_C \vec{F} \cdot d\vec{r} = 2\pi$ para qualquer curva fechada simples C orientada no sentido positivo que contenha a origem.
- (b) $\oint_C \vec{F} \cdot d\vec{r} = 0$ para qualquer curva fechada simples C orientada no sentido positivo que não contenha a origem.