Um Cálculo Exato em Adsorção Sequencial Aleatória

Lillian Rossi Rasteiro Thomas Logan Ritchie

Universidade Federal ABC

Considere o seguinte algoritmo aleatório:

- (i) A caixa $\Lambda_n = \{-n, -n+1, \dots, 0, \dots, n-1, n\}$ está inicialmente "vazia", isso significa que assinalamos 0 aos (2n+1) sítios de Λ_n
- (ii) Um sítio de Λ_n é escolhido aleatoriamente de maneira uniforme e sobre ele deposita-se uma partícula. Nesse momento o "spin" desse sítio altera-se de "0" para "1" e o mesmo é declarado ocupado.
- (iii) Um novo sítio de Λ_n é escolhido uniformemente dentre os sítios de Λ_n que não estejam ocupados e que possuam ambos os primeiros vizinhos desocupados. Como antes, o spin desse sítio é alterado de "0" para "1" e o mesmo é declarado ocupado.
- (iv) Repete-se o item (iii) até que todos os sítios de Λ_n ou estejam ocupados, ou possuam (pelo menos) um vizinho ocupado.
- (v) A configuração terminal da caixa Λ_n denominase limite de saturação e indica-se por ξ_n . Está claro que ξ_n é uma sequência (aleatória) finita de 0's e 1's indexados pelos sítios de Λ_n . Isto é, $\xi_n \in \{0,1\}^{\Lambda_n}$

O algoritmo descrito acima é um modelo matemático para uma classe de fenômenos físicos e químicos denominada "Adsorção Sequencial Aleatória" (ASA)¹. Esses fenômenos são estudados na mecânica estatística de não-equilíbrio, em geral por métodos não-rigorosos[2].

Um ponto-chave que se procura entender é o comportamento assintótico da densidade de ocupação da caixa Λ_n no limite de saturação. Mais precisamente, procura-se estudar o comportamento assintótico da variável aleatória $\rho_n = \frac{\#(\xi_n)}{|\Lambda_n| = 2n+1}$, quando $n \to \infty$, onde $\#(\xi_n)$ denota a quantidade de 1's em ξ_n , ou seja, o número de partículas na caixa Λ_n na configuração saturada

Designando por $\xi_n(0)$ o spin da origem na configuração saturada e por $\mathbb{P}(\xi_n(0) = 1)$ a probabilidade de haver uma partícula sobre a origem na configuração saturada, foi estabelecido em [3] que a sequência de variáveis aleatórias (ρ_n) , $n \in \mathbb{N}$, converge em distribuição para a constante

$$\rho \stackrel{\text{def}}{=} \lim_{n \to \infty} \mathbb{P}(\xi_n(0) = 1).$$

O valor de ρ foi determinado em [1] por técnicas convencionais da física-matemática.

Neste trabalho obtemos o valor de ρ (0,4304 $\leq \rho \leq 0,4339$) a partir da descrição de um algoritmo limite (simulação perfeita) que preenche $\mathbb{Z} = \Lambda_{\infty} = \{\dots, -n, \dots, 0, \dots, n, \dots\}$ até uma configuração saturada $\xi \in \{0,1\}^{\mathbb{Z}}$ de tal sorte que a distribuição de ξ corresponde precisamente ao limite das distribuições de ξ_n . Em particular, $\mathbb{P}(\xi(0) = 1) = \lim_{n \to \infty} \mathbb{P}(\xi_n(0) = 1) = \rho$, ou seja a probabilidade de encontrarmos uma partícula sobre a origem de \mathbb{Z} no limite de saturação termodinâmico corresponde ao limite $(n \to \infty)$ das probabilidades de encontrarmos uma partícula sobre a origem da caixa Λ_n em sua configuração saturada.

O trabalho pretende ilustrar a utilização de técnicas construtivas em probabilidade, como a simulação perfeita de objetos aleatórios limite e acoplamento, a problemas concretos da mecânica estatística.

Referências

- [1] Mackenzie, J. K. Sequential filling of a line by intervals placed at random and its application to linear adsorption. J. Chem. Phys. 37, 723. (1962)
- [2] Evans, J. W. Random and cooperative adsorption. Rev. Modern Phys. 65, 1281–1329.(1993)
- [3] Ritchie, T. L. Construction of the thermodynamic jamming limit for the parking process and other exclusion schemes on \mathbb{Z}^d . Journal of Statistical Physics, vol. 122, No. 3, 381-398. (2006)

¹Random Sequential Adsorption (RSA) em inglês.